

# **Next Generation Flexible Trigeneration Geothermal ORC Plant**

Innovating Geothermal Energy for a Carbon-Neutral Europe



This project has received funding from the Horizon Europe Framework Programme (HORIZON) Research and Innovation Actions under grant agreement No 101148170.







# Project Overview













### **Core Mission**

To transform geothermal Organic Rankine Cycle (ORC) plants into flexible tri-generation systems that produce electricity, heating, and cooling, using an Al-integrated Energy Management System (EMS).



Heating and cooling account for 46% of EU energy cosumption, with only 18% met by renewables. nGEL targets the untapped potential of low-to-medium temperature geothermal resources to balance energy demands.

## **Energy Demand Focus**

## **Scalability Potential**

If applied across the EU, nGEL could meet about 4% of the EU's current annual heat demand, equivalent to an economic saving of €9.6 billion annually through reduced natural gas imports.



# The Challenges



**Energy Consumption Gaps:** Heating and cooling represent 46% of the EU's energy use, but renewables only cover a fraction of this demand.



**Reliance on Fossil Fuels:** Natural gas is a primary source, creating economic and environmental vulnerabilities.



**Grid Instability:** Current renewables (e.g., solar, wind) are intermittent, challenging grid stability.

**Low-Temperature Resources:** Europe has abundant low-enthalpy geothermal fields, but they are underutilised, especially in binary ORC plants.

# What is Needed



**Flexible and Scalable Renewable Energy:** nGEL's tri-generation system provides flexibility for various energy demands.



#### **Real-Time Demand Response:**

An Al-driven EMS, integrated with cold and thermal energy storage, enhances grid compatibility and supports the day-ahead energy market.



#### **Scalability Across the EU:**

The technology targets sedimentary formations (e.g. Pannonian Basin and Upper Rhine Graben) and can be implemented widely with existing and new ORC infrastructure.





# **Project Objectives**





# nGEL Project Solution



### **Expected Outcomes**

Meets dynamic energy needs and contributes 4% to the EU's heating demand, with substantial reductions in reliance on imported natural gas.

Enable cooling alongside power and heating, enhancing multi-functional use.





# Key Innovations



### **Digital Twin of ORC Plant**

Al-driven digital twin to monitor, predict, and optimise plant operations, ensuring peak performance.

### **Demand Side Management (DSM)**

and grid needs.

#### **Enhanced Resilience**

Ensures operational reliability even in high ambient temperatures, essential for summer demandspikes.

### **Smart Control Integration**

Optimises tri-generation flexibility by balancing output across power, heating, and cooling.

Adaptive control strategies to handle fluctuations in demand





# **Concept and Methodology**

## **Methodology**

Digital Twin Integration

Uses AI-based simulation models to optimise ORC system performance. Cold Thermal Energy Storage and Thermal Energy Storage Development

> Designs and implements CTES and TES for enhanced grid resilience.

## Design Philosophy

#### Demand Side Management

Creates a responsive energy solution by optimising energy output to match grid requirements. Flexibility and environmental sustainability are at the core, with scalable solutions adaptable to various European regions.







# **Pilot Region**

### **Target Pilot Region**

Selected EU location is the Kızıldere village of Sarayköy district in Denizli Province, southwestern Turkey. Test scalability, optimise EMS configurations, and evaluate the environmental and economic impact.



**Community Engagement** 

ج

Partnering with local energy providers to adapt solutions to regional infrastructure needs.



# **Expected Outcomes**



Reduces capital, operational, and maintenance costs, making geothermal energy more competitive. Environmental &

**Societal Benefits** 

Lower CO2 emissions and significant contributions to the EU's climate neutrality goals.



Competitiveness

Enhances geothermal ORC technology's role in Europe's renewable energy landscape. Provides a reliable renewable energy source to stabilise grids, especially during intermittent renewable peaks.

 $\overline{ }$ 

**Energy Security &** 

**Grid Resilience** 



# **Expected Impact on EU Policy and Economy**



## **Policy Influence**

nGEL aims to shape future geothermal energy regulations and smart grid policies

## Methodology

Potential to create jobs and lower energy costs, especially in pilot regions





### **Technical Tools**

Supports local energy autonomy by diversifying renewable energy sources, reducing dependency on imports



# **Contact Information**

- **Organisation:** Fraunhofer IEG
- Email: coordinator@ngel-geothermal.eu



Project Coordinator: Dr Shahin Jamali

X /nGEL\_geoEU



@nGEL-EU-Geothermal



